Продолжая использовать сайт, вы даете свое согласие на работу с этими файлами.
二氧化硫
二氧化硫 | |
---|---|
IUPAC名 Sulfur dioxide | |
英文名 | Sulfur dioxide (美国)、Sulphur dioxide(英国) |
别名 | 亚硫酸酐 |
识别 | |
CAS号 | 7446-09-5 |
PubChem | 1119 |
ChemSpider | 1087 |
SMILES |
|
InChI |
|
InChIKey | RAHZWNYVWXNFOC-UHFFFAOYAT |
Beilstein | 3535237 |
Gmelin | 1443 |
UN编号 | 1079, 2037 |
EINECS | 231-195-2 |
ChEBI | 18422 |
RTECS | WS4550000 |
KEGG | D05961 |
MeSH | Sulfur+dioxide |
性质 | |
化学式 | SO2 |
摩尔质量 | 64.054 g·mol⁻¹ |
外观 | 無色氣體 |
氣味 | 泼辣 |
密度 | 2.551 g/L |
熔点 | −72.4 °C(200.75 K) |
沸点 | −10 °C(263 K) |
溶解性(水) | 9.4 g/100 mL,形成亚硫酸 |
pKa | 1.81 |
黏度 | 12.82 μPa·s |
结构 | |
分子构型 | 角形 |
偶极矩 | 1.62 D |
热力学 | |
ΔfHm⦵298K | −296.81 kJ mol−1 |
S⦵298K | 248.223 J K−1 mol−1 |
危险性 | |
欧盟危险性符号 | |
警示术语 | R:R23-R34 |
安全术语 | S:S1/2-S9-S26-S36/37/39-S45 |
H-术语 | H314, H331 |
NFPA 704 | |
闪点 | 易燃 |
致死量或浓度: | |
LC50(中位浓度)
|
3000 ppm(小鼠,30分钟) 2520 ppm(大鼠,1小时) |
LCLo(最低)
|
993 ppm(大鼠,20分钟) 611 ppm(大鼠,5小时) 764 ppm(小鼠,20分钟) 1000 ppm(人,10分钟) 3000 ppm(人,5分钟) |
相关物质 | |
相关化学品 | 三氧化硫、硫酸 |
若非注明,所有数据均出自标准状态(25 ℃,100 kPa)下。 |
二氧化硫,(英語:sulphur dioxide , sulfur dioxide)化学式是SO2。是最常见的硫氧化物。无色气体,有强烈刺激性气味。大气主要污染物之一。火山爆发时会喷出该气体,在许多工业过程中也会产生二氧化硫。由于煤和石油通常都含有硫化合物,因此燃烧时会生成二氧化硫。當二氧化硫溶於水中,會形成亞硫酸(酸雨的主要成分)。若把SO2进一步氧化,通常在催化剂如二氧化氮的存在下,便会生成硫酸。这就是对使用这些燃料作为能源的环境效果的担心的原因之一。
目录
结构
SO2是一个V型的分子,其对称点群为C2v。硫原子的氧化态为+4,形式电荷为0,被5个电子对包围着,因此可以描述为超价分子。从分子轨道理论的观点来看,可以认为这些价电子大部分都参与形成S-O键。
|
|
SO2中的S-O键长(143.1 pm)要比一氧化硫中的S-O键长(148.1 pm)短,而O3中的O-O键长(127.8 pm)则比氧气O2中的O-O键长(120.7 pm)长。SO2的平均键能(548 kJ mol−1)要大于SO的平均键能(524 kJ mol−1),而O3的平均键能(297 kJ mol−1)则小于O2的平均键能(490 kJ mol−1)。这些证据使化学家得出结论:二氧化硫中的S-O键的键级至少为2,与臭氧中的O-O键不同,臭氧中的O-O键的键级为1.5
存在
地球大气层中的二氧化硫含量很小,约为1 ppm。
在金星大气层中,二氧化硫是第三多的气体,含量150 ppm。在那里,它和水反应生成硫酸云,是金星大气层硫循环的关键物质,也导致了全球变暖。虽然二氧化硫在火星仅以痕量存在,但它被认为是早期火星变暖的关键因素,据估计低层大气层中的二氧化硫浓度高达100 ppm。在金星、地球和火星中,大气层中的二氧化硫主要来自火山。木星的卫星木卫一的大气层90%都是二氧化硫,而木星大气层中可能也有痕量的二氧化硫。
二氧化硫被认为在伽利略卫星中大量存在。它可能是木卫一升华的冰或霜,也可能存在于木卫二、木卫三和木卫四的地壳和地幔中。
化学性质
酸性氧化物
SO2是酸性氧化物,具有酸性氧化物的通性。可以與水作用得到二氧化硫水溶液,即“亞硫酸”(中强酸),但真正的亚硫酸分子从未在溶液中观测到。
与碱反应形成亚硫酸盐和亚硫酸氢盐。以与氢氧化钠的反应为例,产物是亚硫酸钠还是亚硫酸氢钠,取决于二者的用量关系。
- 或
这也是二氧化硫能使澄清石灰水变浑浊的原因:
与碱性氧化物反应生成盐。
氧化还原反应
SO2中的硫元素的化合价为+4价,为中间价态,既可升高,也可下降。所以SO2既有氧化性,又有还原性,但以还原性为主。
SO2的还原性较强,可被多种氧化剂(如 O2、Cl2、Br2、HNO3、KMnO4等)氧化。
SO2也有一定的氧化性,如:
工业上可以用此反应制造高纯度硫磺。
用途
防腐剂
由于二氧化硫的抗菌性质,它有时用作乾果、醃漬蔬菜、與經加工處理的肉製品(如香腸及漢堡肉)等不同種類的食物中。用来保持水果的外表,或防止食物腐烂。二氧化硫的存在,可以使水果有一种特殊的化学味道、及保持新鮮的外觀。
酿酒
二氧化硫是酿酒时非常有用的化合物,它的E编码为E220。它甚至在所谓的“无硫的”酒中也存在,浓度可达每升10毫克。它作为抗生素和抗氧化剂,防止酒遭到细菌的损坏和氧化。它也帮助把挥发性酸度保持在想要的程度。酒的标签上之所以有“含有亚硫酸盐”等字句,就是因为二氧化硫。根据美国和欧盟的法律,如果酒的SO2浓度低于10ppm,则不需要标示“含有亚硫酸盐”。酒中允许的SO2浓度的上限在美国为350ppm,而在欧盟,红酒为160ppm,白酒为210ppm。如果SO2的浓度很低,那么便很难探测到,但当浓度大于50ppm时,用鼻子就能闻出SO2的气味,用舌头也能品尝出来。
SO2还是酿酒厂卫生的很重要的要素。酿酒厂和设备必须保持十分清洁,且因为漂白剂不能用于酿酒厂中,SO2、水和柠檬酸的混合物通常用来清洁水管、水槽和其它设备,以保持清洁和没有细菌。
还原性漂白剂
二氧化硫还是一个很好的还原剂。在水的存在下,二氧化硫可以使物质褪色。特别地,它是纸张和衣物的有用的漂白剂。这个漂白作用通常不能持续很久。空气中的氧气把被还原的染料重新氧化,使颜色恢复。
可以下列化學方程式表示: H2SO3 + 染料 → H2SO4 +(染料 - O)
因為空氣提供氧氣給予染料,染料被馬上氧化,顯示原來的顏色,這就是漂白作用通常不能持续很久的原因。
可以下列化學方程式表示: 2(染料 - O) + O2 → 2染料
中学实验室中用碱性品红溶液检测二氧化硫的存在。二氧化硫可以使品红试液褪色,从而说明二氧化硫使有机物漂白的性质;而褪色后的溶液经过加热,又恢复为红色,从而说明了二氧化硫漂白的原理是与有机物生成了“加合物”,而此类加合物不稳定,加热时便分解,又放出二氧化硫。一个相关的化学鉴定方法称为希夫法(Schiff法) ,是用亚硫酸氢钠与品红或副品红发生加成,再用二氧化硫脱色。如果得到的溶液(希夫试剂)与待检试液作用生成粉红色或紫色,则可以证明待检试液中醛类的存在。目前该反应的机理一般认为是下图所示的机理:
硫酸的前体
二氧化硫还用来制备硫酸,首先转化成三氧化硫,然后再转化成发烟硫酸,最后转化成硫酸。这个过程中的二氧化硫是含硫矿物与氧气反应产生的。把二氧化硫转化成硫酸的过程,称为接触法。
制冷剂
由于二氧化硫容易液化,且汽化热很大,因此适合作为制冷剂。在氟利昂的发展之前,二氧化硫就曾经用作家用冰箱的制冷剂。
试剂和溶剂
液态二氧化硫是万用的惰性溶剂,广泛用于溶解强氧化性盐。它会发生自偶电离生成SO2+和SO32−。
它有时也用作有机合成中磺酰基的来源,把芳基重氮盐用二氧化硫处理,便可获得对应的芳基磺酰氯。
脱氯
在城市的污水处理中,二氧化硫用来处理排放前的氯化污水。二氧化硫与氯气反应,氯气被还原,生成Cl−。
在生物化學或生物醫學上的功用
排放
根据美国国家环保局,下面的表格列出了美国每年排放的二氧化硫,单位为英吨:
1999 | 18,867 |
1998 | 19,491 |
1997 | 19,363 |
1996 | 18,859 |
1990 | 23,678 |
1980 | 25,905 |
1970 | 31,161 |
主要由于美国环境保护机构的酸雨计划,美国在1983年和2002年期间的二氧化硫排放量减少了33%。这是由于烟气脱硫,一种可以让SO2不从发电厂排放出去的技术。特别地,氧化钙与二氧化硫反应,生成亚硫酸钙:
然后CaSO3再被空气氧化成CaSO4(石膏)。大部分在欧洲出售的石膏都是来自烟气脱硫。
到2006年为止,中国是世界上二氧化硫排放量最大的国家,2005年的排放量估计为25.49百万吨。自从2000年以来,排放量增加了27%,差不多与美国在1980年的排放量相等。
2003年,一座伊拉克的硫厂发生了灾难,大量二氧化硫被排放到大气中。
溶解度与温度的关系
22 g/100ml(0℃) | 15 g/100ml(10℃) |
11 g/100ml(20℃) | 9.4 g/100 ml(25℃) |
8 g/100ml(30℃) | 6.5 g/100ml(40℃) |
5 g/100ml(50℃) | 4 g/100ml(60℃) |
3.5 g/100ml(70℃) | 3.4 g/100ml(80℃) |
3.5 g/100ml(90℃) | 3.7 g/100ml(100℃) |
- 以上的值是分压为101.3 kPa的SO2在水中的溶解度。根据亨利定律,气体在液体中的溶解度取决于气体的分压。
- 这里的溶解度是指在“纯水”中的溶解度,也就是说,水中所含的SO2与气相中的二氧化硫平衡。此時的水溶液是酸性的。SO2在中性(或碱性)水中的溶解度一般要更大,因为SO2将转化为亚硫酸氢根和一些亚硫酸根离子。
对健康的威胁
二氧化硫具有酸性,可与空气中的其他物质反应,生成微小的亚硫酸盐和硫酸盐颗粒。当这些颗粒被吸入时,它们将聚集于肺部,是呼吸系统症状和疾病、呼吸困难,以及过早死亡的一个原因。如果与水混合,再与皮肤接触,便有可能发生冻伤。与眼睛接触时,会造成红肿和疼痛。
|
|